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Buckling of Clamped Oval Cylindrical Shells
under Axial Loads

G. Femxstein,* Y. N. CuEN,} anDp J. KEMPNERT
Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

The effect of clamped boundary conditions on the elastic buckling of finite, oval cylindrical

shells under axial compression is investigated.

In the development of the problem, a rather

accurate representation of the prebuckling state is employed. The rigorous boundary condi-
tions are enforced on both the prebuckling and buckling solutions. The stability equations
are solved by the Fourier method in conjunction with the use of a higher-order difference
technique. Noticeable deviations between the results of the present analysis and those
established for infinitely long shells were observed, particularly for moderate-to-large out-of-

roundness.
Nomenclature

f = Airy’s stress function

h = uniform wall thickness

P = gro/ER = nondimensionalized uniformly distrib-
uted external pressure

q = uniform external pressure

r = Jocal radius of curvature of the cross section of
the undeformed middle surface of the shell

) = Ly/(2r) = radius of the equivalent -circular
cylinder

up,w = axial, circumferential and inward radial dis-

placements of a point on the middle surface of
the shell, respectively
z,8,2 = axial, circumferential and radial coordinates, re-
spectively, of any point in the oval shell, and
defined according to an orthogonal curvilinear
frame of reference
Eh3/[12(1 — »?)] = flexural rigidity of the shell
Young’s modulus of elasticity
f/(Ehre?) = nondimensionalized first order Airy’s
stress function
prebuckling displacement function
(ro/R)[12(1 — »?)] V2 = thickness parameter
axial and circumferential lengths of the cylinder,
respectively
number of terms in series solution for the first
order stress function and radial displacement,
respectively
M. M, = axial and circumferential bending moment re-
sultants per unit of circumferential and axial
length, respectively
M., M,. = axial and circumferential twisting moment resultants
per unit of circumferential and axial length, re-
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spectively

N = end reaction per unit circumferential length, posi-
tive in compression

N,,N, = axial and circumferential normal membrane force

resultants per unit of circumferential and axial
length, respectively

NNz = axial and circumferential membrane shear force
resultants per unit of axial and circumferential
length, respectively
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r/ro = nondimensionalized local radius of curva~
ture of the oval cross section

s/Ly = nondimensionalized circumferential co-
ordinate

prebuckling radial displacement function

nondimensionalized first-order axial, circum-
ferential, and radial displacements of a point

w/ry on the middle surface of the shell, respec-

tively

U = «*/L,, = nondimensionalized prebuckling axial and radial

displacements of a point on the middle surface

of the shell

X = z/Li = nondimensionalized axial coordinate of any point
in the oval shell

prebuckling displacement parameter

unit end shortening

axial stress parameter

oin/o0 = axial stress parameter at initial buck-
ling

o./o0 = axial stress parameter at collapse load

Poisson’s ratio

measure of oval eceentricity

ERh/{[3(1 — »®)]Vry} = buckling stress of an in-
finite circular cylinder of radius r, under axial
compression

= average intensity of axial compressive load at

initial buckling

= average intensity of axial compressive load at
collapse load

prescribed unit end shortening

correction funection for prebuckling axial dis-
placement
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1. Introduction

HE use of thin shells as structural elements has been on

the increase in recent years due to their high structural
efficiency, availability of suitable high-strength materials and
advances in the understanding of thin shell behavior. With
regard to cylindrical shells, a great many applications, in
which stability was a consideration, have been confined to the
circular configuration. This, to a large extent, was due to the
great deal of work done on the analysis of eircular cylindrical
shells with the impetus of Donnell’s work;! see, for example,
the extensive bibliographies in Refs. 2-4. Although rela-
tively little theoretical work has been done on the stability of
noneircular cylindrical shells, attention can be drawn to works
by Marguerre and by Kempner and Chen.5-?

In the present study the problem of axial loading of finite
length, oval, cylindrical shells with elamped boundaries is in-
vestigated. The analysis can be extended to other boundary
and loading conditions. The results should be applicable to
the design of noncircular cylinders having considerable out-of-
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Fig. 1 Sign convention
and geometry for coordi-
nates and displacements.

roundness as well as ones designed to be circular, but fabri-
cated slightly oval.

In the development of the problem a representation of the
prebuckling state, which proves to be rather accurate within
the scope of considerations of static equilibrium, is employed.
The corresponding prebuckling deformations appear among
the terms of the stability equations and their appearance in
turn permits the enforcement of rigorous conditions at the
supports of the shell. The dependency of the buckling dis-
placements and the corresponding stresses on the circumferen-
tial coordinate are expressed as finite Fourier series, with the
Fourier coefficients representing the axial variation. The
ordinary differential equations obtained are linear, but
possess variable coefficients. They are solved by the finite
difference method.

I1. Basic Equations

The relations employed in this work are applicable to thin-
walled cylindrical shells of uniform thickness, composed of a
homogeneous, isotropic, linearly elastic material.

Donnell-type equations are used in the analysis. As is
well known, in this type of shell theory, the only equilibrium
equation remaining to be satisfied is

DV"w - f,ssw,zz - f.Zl(l/T + w,ss) + 2f,zsw,zs - q = 0 (1)

if a stress function f is introduced such that f is related to the
membrane stress resultants by

Nz = f,ss, Ns = f,zx, N:cs = _f,:cs

Moreover, the functions f and w must satisfy the compatibility
equation in the form of

A/ER)VY 4+ W o0/T — W 2.2 + W, s = 0 (2)

In addition, the force and moment resultants are related to
the middle surface displacements as follows (see Fig. 1):

N.(z,8) = [ER/(1 — ) Nu. + Iw.? +
v[v, — (w/ry + 3w 2]} (3a)

Ni(z,8) = [Eh/(1 — v) o, — (w/r) +
w2+ vu. + 3w.2l} (3b)

N.(z,8) = N.(2,8) =

[ER/201 + ) Nu, + v + wow,}  (3c)
M(z,8) = —[ER}/12(1 — »)w .o + vw,.}  (3d)
M. (z,s) = —[ER¥/12(1 — ) ){w. + vwc}  (30)
M. (2)8) = —M.(z,s) = [ER}/12(1 + »)]w,.. (3f)

Equations (1) and (2) are two simultaneous partial dif-
ferential equations which determine the two variables w and f
completely, if boundary conditions are properly posed at the
ends of the cylindrical shell. In this connection, the natural
boundary conditions are such that one member of each of the
four products uN., vN,,, w(M, . — 2M.,.) and w .M, must
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be prescribed. Consequently, it is possible to pose four dif-
ferent sets of “clamped” conditions, each of which includes the
conditions w(+L/2,8) = 0 and w,.(+1,/2,8) = 0 in com-
mon. The influence of each of these four sets of boundary
conditions on the bifurcation-buckling behavior of circular
cylindrical shells (as well as the four variations of simply-
supported ends) has been discussed in great detail by Alm-
roth.'t In the present work, attention is centered on the case
“C1” in Almroth’s classification, which requires

w(£L1/2,8) = w,o(E£L1/2,8) = v(£11/2,8) = 0
u(xL;/2,8) = FA;/2 = const

at the ends, where A; is the preseribed total end-shortening.
The choice is based on the fact that the group of end condi-
tions so preseribed is the only set of “clamped” conditions
among the four that can be expected to be satisfactorily re-
produced in the laboratory. The analysis that follows, how-
ever, can be extended to deal with the other combinations of
end conditions without any added difficulties.

Moreover, in order to take full advantage of the expected
symmetry of the deformation, it is desirable to consider only
one half of the shell. Thus, the boundary conditions posed
above are to be enforced at one end, say, s = L:/2 while the
stresses and deformations are required to satisfy four con-
ditions of symmetry at the center, viz.,

J'0,8) = 0,7""(0,8) = 0, w(0,8) = 0,
)
w'"'(0,5) = 0

An alternative approach to the problem is to solve the

- three displacement equations of equilibrium, which proves to

be advantageous in seeking the prebuckling solution. The
displacement equations of equilibrium are obtained by elimi-
nating the stress-resultants in the equilibrium equations by
virtue of Eqgs. (3). In doing so, it follows that

2{“’.5\74‘ + W,zW, zx + V{v.sx - (1/”')?1].1 + w,sw,sm]} +
A=+ v+ wew, + waw, =0 (5a)

Aw,es + W, 2s] + 0.0 — A/Pw0,, + w ..} +
(1 — »)[Ue + V22 + W,2oW,, + ww,.] = 0 (5b)
DVw — [Eh/(1 — »){{A/7) + w, ) (u,= + 3w.?) +
w, —w/r + w2 +
Wz (U, + 3w? + v, — w/r + 3w H] +
Wl — V) [y + v + waw,l} —qg=0 (5¢)

II1. Prebuckling State

A solution to the nonlinear displacement equations of
equilibrium [Egs. (5)] may be regarded as the combination
of the prebuckling deformation (2, #°, w® and the buckling
deformation (i, 9, ) such that w = u® + Mg, . .. ete. if the
disturbance \ is restricted to be very small.  Other quantities,
such as the stresses, are also expanded in the same way so that
the symbols ( )® and ("), representing the first two Taylor
coefficients (i.e., ( )° = [( )=, (") = [d( )/dAhwo), can
be used as perturbation operators.

For instance, applying the perturbation operator of the
zeroth order to Eqs. (5) yields three equations of equilibrium
which are identical to the original ones except for the super-
seripts ‘0" to be carried by all the displacement components
and their derivatives. :

From the study of buckling of infinitely long circular cylin-
drical shells it is clear that the prebuckling displacement field
is uniform throughout the entire cylinder. For finite circular
cylinders, the prebuckling displacement field is not uniform.
It is, however, symmetric with respect to the axis of the
cylinder.122  For finite supported oval cylinders, such as the
clamped ones in the present work, the prebuckling displace-
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ment field is neither uniform nor axisymmetric.’* Evidently
the accurate (if not exact) determination of this nonuniform
prebuckling displacements is a prerequisite for the enforce-
ment of the rigorous edge conditions. In this connection a
relatively simple approximate solution for the prebuckling
state can be obtained within the framework of the following
assumptions:!?

1) The quantities appearing in the zeroth-order version of
Egs. (5) are initially taken to be independent of the circum-
ferential coordinate s; i.e.,d( )/ds = 0,andr is a constant.

2) The dependency of # upon s is restored for the radius of
curvature appearing in the solution of the equations of equi-
librium simplified according to the first assumption.

3) The arbitrary function resulting from the partial integra-
tion that leads to the determination of the prebuckling axial
displacement is permitted to vary in the circumferential
direetion to insure the uniform movement of the ends; i.e.,
w¥(x£L,/2,5) = const. These assumptions, hereupon called
the “pseudo-symmetry” for easy identification, are justified
by the excellent agreement between the simplified solution
and the exact solution of the linearized form of Egs. (5)
(Refs. 15 and 16) with the exception of the perimetric dis-
placement ¢°. Thus, it seems reasonable to assume that even
with the retention of the beam-column terms contained in
Egs. (5), the pseudo-symmetric solution provides an accurate
description of the prebuckling state.

The zeroth-order equation of equilibrium derived from the
first of Eqgs. (5) and simplified utilizing assumption (1) is
readily integrable with respect to z, to yield

u'zo + %w,z02 - Vwo/,r = —2(1 - V2)0¢/K (6)

in which @ is the load parameter representing the ratio of the
average axial stress to the buckling stress go = 2E/K of an
infinite circular cylinder of radius 7; and K = [12(1 —
v2) |V2p/h. This load parameter is related to the average
axial load (per unit circumferential length) & and the applied
external pressure ¢ by

6 = KWV + gA/L))/2Eh )

where 4 is the area enclosed by the oval cross section and Ly
= 277, is the perimetric length of the oval contour. So far,
the function ¢(s) is arbitrary except that its average ovet the
oval contour is equal to unity, so that Eq. (6) satisfies over-all
equilibrium in the axial direction.

Finally, when assumption (1) is applied to the last of Eqs.
(5) and when the equation obtained is combined with Eq. (6)
to eliminate u % the following equation governing the non-
dimensional deflection W results

WO xxxx + 2K(L1/r0)?06W°, xx -+ (K/R)*(Ly/ro)*W° =
(K/R)*(Ln/r0)*(pR* — 2vR0¢/K) (8)
in which the following definitions have been introduced
X = z/Ly, WO = w/ro, R(S) = v/rq,
p = qro/Eh, S = s/Ly

Equation (8), with the exception of the second term (the
“beam-column term’”), was obtained and solved in Ref. 13.
It is exact for the circular cylinder to the extent of Donnell’s
(or Timoshenko’s) accuracy when ¢ and R are both equal to
unity (see, for instance, Refs. 11 and 12). It can be easily
shown that the solution to Eq. (8) appears formally as:

Wo = (pR* — 20R66/K)T; G=123 O

which is the same form as that obtained in Ref. 13. How-
ever, with the beam-column term retained, the function T';
takes on various forms. 'These relations depend upon whether
the quantity R6¢ (proportional to the magnitude of the ap-
plied load) is less than, greater than, or equal to unity, cor-
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responding to values of 7 of 1, 2 or 3, respectively. Thus,
T,

1 — Cysin2a:X sinh20,X — € cos2a,.X cosh2c:X

Ty = 1 — (3 c082a3X — C4 cos2a,X
T; = 1 — X sin20:X — Cg cos2a.X
where

an,a = $(Ly/ro) [K(1 = R¢)/2R]!/? (10a)

as,a0 = 5(L/ro){ [K(ROp + 1)/2R]V? +
(K(R6p — 1)/2R]"/*}  (10b)
as = §(Li/ro) [K/R] (10¢)

The constants of integration C; are evaluated by means of
the clamped-end conditions

Wo(£1,8) = 0and W x(+3,8) =0

The nondimensional axial displacement U® = u%/L; can now
be obtained by integrating ¥q. (6) with the condition of sym-
metry U%0,S) = 0. The results of the straightforward in-
tegration of the linearized form of Eq. (6) for the three cases
will not be presented here. All three cases are subjected to
the condition that the end-shortening must be uniform, i.e.,
U%(3,S) = —¢/2 where the constant unit end-shortening e is
defined by e = A;/L,, with A; being the total shortening of the
cylinder. When this condition is enforced, it follows that

& = (pvR — 20¢/K) — (prR — 2v*0¢/K) ¢

in which ¢ = 1, 2 and 3 correspond to the three cases for which
R0O¢ is less than, greater than, or equal to unity, and the fune-
tions ¥, corresponding to these cases are:

Y1 = [2oanes/(an? + a2)?l{(cosh2ar — cos2a;)/

(cu sinh20n + @ sin2a) |

¢ oz — o sines sinay
2 = " A
3o a3 sinag COSoy — oty Sinay CoSas

Y = (2/as)[sin? as/(as + sinas cosas)]

According to the second pseudosymmetric assumption, the
quantities B and ¢ are now regarded as functions of S. Con-
sequently, a; and ; are functions of 8 while 7';, W and U®
are functions of X and S.

One final preparation to facilitate the determination of the
function ¢ is to rewrite the expression for the unit end-short-
ening as:

& = —(¢/Fu)(20/K — vpF2/)
where
Fi = Fu(S) = 1/(1 — »*¥y),
Fai = F2i(S) = R(1 — )/ (1 — »*)

Let the symbol () be introduced to indicate an average value
of ( );ie,

O =5 Jo7Coas= [ s

Then, as stated earlier, § = 1, and, moreover, since the unit
end-shortening is independent of S, it follows that e; = &.
When these two conditions are enforced,

¢ = ¢:8) = (Fi/Fr) — wKpFyi/20)(Fri/Fyi — Fai/F)

Finally, upon the elimination of ¢ from Eq. (9), it follows
that:

We = pRTR + V2F2ipli/ﬁli — vFy] — ZVRoTiFU/KF’“

It should be noted, however, that up to this pojmt ¢(S) re-
mains indeterminate. The complete determination of $(8)
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Fig. 2 Initial buckling stress.

for a given value of  relies upon a numerical iterative process
discussed in detail in 2 later section.

1V. Stability Equations

The stability equations can be obtained by the application
of the first-order perturbation operator () to Eqgs. (56). How-
ever, as a matter of convenience, this operation is performed,
instead, on Egs. (1) and (2). The quantities appearing in the
resulting stability equations are w®, f°, b, f and their deriva-
tives: In these equations the prebuckling force-resultants
expressed in the form of f° .., . . ., ete. are caleulated from the
zeroth-order form of Eqgs. (3) which yield

NS = f0, = —2Ehf¢/K (11a)
N& = f0.. = —ER[W°/R + 2v0¢/K} (11b)
Nxso = _fo,zx =0 (].].C)

Of course, the stability equations so obtained would be
equivalent to their counterparts derivable as first order ver-
sions of Eqs. (5) if w® and the resultant forces in Eqs. (11) were
exact. Nevertheless, the above equivalence holds within the
accuracy of the pseudo-symmetric approximation, since the
functions w° and f° .z, 1., f2¢ given in Egs. (11) do satisfy
the zero-order version of Eqgs. (1) and (2) to the extent of the
assumptions of pseudo-symmetry.

After the zeroth-order stress function f° is eliminated by
virtue of Eqgs. (11), the stability equations are obtained with
the aid of the aforementioned procedure and cast into the
following dimensionless form:

W xxxx + 2(Ly/Lo)*W xxs8s + (L1/Loy*W ssss +
8m2KO0¢(L1/Le)*W xx +
472(L1/Lo)*[2v0¢K + (KY/RYWOIW g5 —
K2(Ly/Lo)*W° xxF s5s — 4m*K2(L1/Lo)?F xx/B = 0 (12)

F xxxx -+ 2(L1/Lo)*F xxss + (L1/Lo)*F ssss +
472(L1/Lo)*W xx/R + (L1/Lo)*W0 xxW g5 = 0 (13)

in which the nondimensionalized variables W and F are de-
fined as

W = W(X,8) = w/re, F = F(X,8) = /(Ehre?)

Although extremely complicated, the variable coefficients
appearing in Eqgs. (12) and (13) are known functions that
have been obtained in Section III. Since these coefficients
are derivable from the determined function W°(X,S), how-
ever complicated, a systematic representation is made possible
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by the following Fourier synthesis of W°:
W = 3@0(X) + G:V(X) cosdwS 4 G (X) cos8mS  (14)
in which the Fourier coefficients are given by

t 5 [P
G (X) = 8p fo R|:R 4 2y, (i) - ysz] X

16»8 % Fy
T; cosdmmSdS — e fo RT; 7 cosdmmSdS

In the above relations, the subseript  is equal to 1, 2 or 3 de-
pending whether the quantity Ef¢ is less than, greater than,
or equal to unity. The three-term Fourier series given in
Eq. (14) was suggested in Refs. 13 and 14, since such an ap-
proximation gives extremely good agreement with the exact
linearized solution of Eqgs. (5). It is, therefore, assumed here
that the three-term representation also closely approximates
the solution of Eqgs. (5) with the beam-column term retained.

In the present work, the local radius of curvature R is repre-
sented by:

R =1/(1 + £ cosdnS) (15)

where 0 < £ < 1 is a measure of the eccentricity of the cross
section of the shell (Fig. 1). Such a relation describes a
doubly-symmetric oval cross section. This expression for the
nondimensional local radius of curvature was chosen because
it produces a family of closed curves of constant circumferen-
tial length with an easily definable out-of-roundness,'s which
provides a convenient basis for comparison of the stability of
noncircular eylinders to that of a circular one.

The nondimensionalized stress function F and buckling de-
flection W may be assumed to be

M
F(X,8) = 349(X) + 3 A (X) cosdmrS  (16a)

m=1

N
W(X,8) = $BOX) + > B®(X) cosdnwS  (16b)

n=1

Observe that these relations are comparable to those used by
Almroth!! with the exception of the difference in the circum-
ferential wave number. These relations imply the assump-
tion of double symmetry in the buckle pattern, while Almroth
only assumed symmetry with respect to one axis. Such an
assumption of symmetry was motivated by the result of the
analysis of the infinitely long oval shells? that odd and even
harmonics do not interact. Moreover, with the possible
exception of supported cylinders of extremely small length,
these harmonics couple only weakly, as may be seen from
Ref. 11.

The two groups of functions A™ (X) and B®(X) in Eqgs.
(16) are governed by a set of coupled ordinary differential
equations with known variable coeflicients. These equations
can be obtained following the substitution of Egs. (16) into
Eqgs. (12) and (13), and thereafter finite-difference arithmatic
takes over.

V. Boundary Conditions

The boundary conditions on the shell must be represented
as relations involving the functions A and B®,

Table 1 Convergence of series test for initial buckling
stress parameter fin

£ 0.1 0.3 0.5 0.7 0.9
M=N-=4 0.884 0.704 0.536 0.424 0.239
6 0.876 0.702 0.533 0.424 0.239

=
I
2
[

%y/L1 = 0.200; r/k = 100; P = 10.
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The clamped-end boundary conditions to be satisfied at
z = Li/2 during buckling are:

(L2, 8) = 0,5(L1/2,8) =0 (17a)
(L1/2, 5) = 0, ' L1/2,8) = 0 (17b)

while the conditions of symmetry are prescribed at the mid-
section of the shell by Egs. (4). It should be noted that the
assumption of antisymmetry instead of symmetry or even the
combination of both is equally plausible. Although analyses
based upon such conditions are not carried out, it is believed
that the results that follow would not differ substantially from

what are actually obtained.
" Equations (16) were substituted directly in the nondimen-
sional form of Eqgs. (4) and (17b) to obtain six simple equiva-
lent relations among the funetions 4™ and B®.

Additional boundary conditions on the function 4 ™ are ob-
tained from Eqs. (17a) by utilizing Eqs. (3) and (16) to
obtain

AMIEY & (L /r)2A™ (L) = 0 m=001...M

and

AWIIE) — 4mt(@ + ) L/ A E) = 0
m=20,1,..., M

corresponding to #(L1/2,8) = 0 and «(L,/2,8) = 0.

VI. Solution of the Stability Equations

As far as can be ascertained, there is no feasible way to ob-
tain closed form solutions to the boundary value problem
posed in the preceding sections. The solution is therefore de-
veloped utilizing the finite difference method, modified to
handle the present problem. The general procedures of the
finite difference technique will not be elaborated here; but the
following aspects should be noted:

1) In the preliminary calculations, the arbitrary function
¢(S) and the dimensionless wave number a(S) must be deter-
mined. The fact that ¢(S) depends upon « is obvious in the
development of the prebuckling solution. On the other hand,
the determination of the subscript 7 in @ = «: and thus the
choice of an appropriate relation among Egs. (10) depends
upon the local values of the product ¢6R. This dictates the
use of an iterative loop starting arbitrarily with, say, ¢ = 1
for all values of S.

2) During the transition from the partial differential equa-
tions [Eqs. (12) and (13)] to the ordinary differential equa-
tions which ultimately led to the difference equations, the
original equations were multiplied by cosjwS8dS and a series
of numerical integrations with respect to the variable S were
performed by means of the formulas of Weddle® and Filon."

Table 22 Initial buckling stress parameter ¢, for various
numbers of axial subdivisions

£/P 10 12 14 16 18 20

0.0 0.951 0.940 0.884 0.915 0.942 0.925
0.1 0.884 0.887 0.859 0.885 0.897 0.889
0.2 0.799 0.800 0.801 0.809 0.814 0.814
0.3 0.704 0.704 0.708 0.719 0.719 0.719
0.4 0.617 0.617 0.630 0.630 0.630 0.630
0.42 . R e e - 0.625
0.45 . e B - . 0.619
0.5 0.536 0.536 0.569 0.569 0.579 0.587
0.6 0.484 0.484 0.509 0.523 0.523 0.523
0.7 0.424 0.425 0.456 0.456 0.456 0.456
0.8 0.347 0.356 0.358 0.358 0.358 0.358
0.9 0.239 0.255 0.255 0.255 0.255 0.255
1.0 0.146 0.146 0.146 0.146 0.171 0.171

% ro/L1 = 0.200; ro/k = 100.
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Fig. 3 Collapse stresses.

3) If conventional central difference operators were
employed, the secular determinant formed of the coefficients
of the quantities 4, = A= (X)), B;» = B®(X;) (X, being
a representative pivotal point) would be large in size and
narrowly banded. To make a more efficient use of the un-
occupied cells of the banded matrix, higher-order difference
operators should be used. The basic difficulties such higher-
order operators present are focused in the boundary condi-
tions, in that a larger number of such conditions is needed but
is not available. This was pointed out by Greenwood, and
counter measures such as imposing some artificial conditions
of symmetry and antisymmetry at the boundary pivot were
proposed.’® As the advantages (in speed of convergence in
terms of numbers of pivots required) are weighed against the
added difficulties, it was found that the operators most
suitable for the present problem are the ones associated with
errors of the order A®, in contrast to the usual A? error for the
ordinary central difference operators, were A is the length of
an interval.

VII. Discussion and Conclusions

Initial (classical) buckling loads were computed using the
numerical methods deseribed in the previous section. The
computations were performed for the family of shells de-
seribed by Eq. (15), having the following properties:

v = 0.3, r0/Ly = 0.2, ro/h = 100

and under a central axial load with no applied lateral pressure.
The results are listed in Tables 1 and 2 and plotted in Figs. 2
and 3. ‘

From the results shown in Table 1, it is seen that the de-
termination of the initial buckling load 8;, is satisfactory with
four term series solutions for the stress function F and the dis-
placement W,

In Table 2 are listed the values of the axial stress parameter
6. for initial buckling of shells of various geometries (£ = 0.0
to £ = 1.0), with the shells divided into increasing numbers of
axial segments (P = 10 to P = 20 for one half the shell
length). From this it is seen that there is a rapid con-
vergence of results, indicating that a relatively small number
of segments is required to attain an acceptable accuracy, with
the possible exception of the case £ = 0.5. This anomaly
seems to be due to the eritical position of this geometry (see
Fig. 3). For clamped circular and nearly circular shells (0.0
< £ < 0.16) there is a small reduction in the load bearing
capacity prior to buckling, as compared to the infinite shell,
while in the range 0.16 < ¢ < 0.4 the solutions are virtually
identical to those for an infinitely long shell.? Above ¢ ~ 0.4
the curve for the clamped shell branches up above that for the
infinite shell exhibiting a large increase in the buckling load
for the clamped end condition.
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The deviation of the present results from those for the
-corresponding infinite shell as described above and shown in
Fig. 3 may be explained in several ways. For example, the
boundary conditions produce two effects. In the first they
cause the prebuckling stress distribution of the finite shell to
be altered from that of the infinite shell (with its uniform stress
distribution) due to the difference in their prebuckling defor-
mations, while in the second they restrict the prebuckling
deformation at the ends of the shell; i.e., they tend to stiffen
the shell. The combination of these effects may produce
either an increase of a decrease in the initial buckling load,
depending on the geometry of the shell in question. For
instance, due to the rotational symmetry of the circular shell,
all points on the shell are equally vulnerable to buckling, and
any nonuniformity in stress due to the first effect will produce
regions of higher stress which will cause the circular shell to
fail at a reduced load, while the second effect has little in-
fluence on this shell. However, in the case of highly non-
circular shells, in the regions of the shell with a small ecurva-
ture, where the initial buckling occurs, the first effect may re-
distribute the load so as to reduce the stress in these regions,
while the second effect, in addition, inereases its resistance to
buckling due to the stiffening effects of the edge conditions.

In addition, the effects of the prebuckling deformation that
tend to weaken the circular shell (¢ = 0) fade as £ increases
toward unity. This aspect can best be demonstrated by con-
sidering the extreme case of £ = 1. In the neighborhood
surrounding an end of the minor axis where buckles initiate,
the local value of the product R8¢ for such a shell must be
greater than unity since both ¢ and @ are finite which R is in-
finite. Thus, the sinusoidal mode T prevails instead of the
rapidly decaying mode T of which the boundary layer effects
contribute heavily toward the weakening of the cylinder.

Some of the curves drawn in Fig. 3 are based on theoretical
results obtained by Kempner and Chen in Refs. 8 and 9. In
Fig. 3 the dashed curves going from the upper left to the lower
right are for the initial buckling load for various shell thick-
nesses (ro/h = 100 and 303). While the curve running ap-
proximately horizontally across the right-hand side, is a plot
of the maximum load carried by the shell (ro/h = 303) after
buckling has taken place.

The individual points plotted in Figs. 2 and 3 are experi-
mental results and were obtained from Ref. 19. The points
in Fig. 2 represent the maximum values of initial buckling
stresses obtained from tests on clamped shells of the given
geometries, while those in Fig. 3 are the maximum experi-
mental collapse stresses for the same group of eylinders.
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